MATH 2050C Lecture 20 (Apr 4)

Last Quiz on Apr 6, covers § 5.1-5.2.

[Problem Set 11 posted, due on Apr 14]

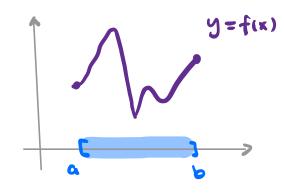
Last time continuity of $f:A \rightarrow \mathbb{R}$ at CEA (or BEA)

Q: What about if A = interval, can we say more?

& Continuous functions on intervals (\$5.3 in textbook)

A closed A bold interval

Q: What can we say about cts fon f: [a.b] - R?



Note: All points $C \in [a,b]$ are cluster points of [a,b].

i.e. $\lim_{x\to c} f(x) = f(c)$

In terms of E-8 def?.

o < (2,3) 8= 8 E, o < 3 A, [d.s] 3 2 A

st. |f(x)-f(c)|< & when |x-c|<&, xe[ab]

Recall: f cts at c => f is "locally bdd" near C

Boundedness Thm: Any cts f: [a,b] - IR is bodd (slobelly on [a,b])

i.e. 3 M > 0 st Ifixil & M Vx & [a.b].

Proof: Argue by contradiction. Suppose f is NOT bold on [a.b].

 $\Rightarrow \forall n \in \mathbb{N}$. $\exists x_n \in [a,b]$ st $|f(x_n)| > n$ (*)

We obtain a seq. (Xn) in [a,b], hence is bdd.

By Bolzano-Weierstrass Thm, 3 convergent subseq. (Xnx) of (Xn)

a & lim (Xnk) & b Now. a & Xnk & b 4keIN

$$\lim_{x\to x_{k}} f(x) = f(x_{k})$$

$$\frac{x_{k} \in [a,b]}{x_{k}}.$$

By continuity of f at 2x, and seg criteria, "limfix) = lim (f(xn,))

$$\lim_{k\to\infty} f(x_{n_k}) = f(\lim_{k\to\infty} x_{n_k}) = f(x_k)$$

So, $f(x_{n_k}) \rightarrow f(x_n)$ as $k+\infty \Rightarrow (f(x_{n_k}))$ is bad.

However,
$$|f(x_{n_k})| > n_k > k$$
 $\forall k \in \mathbb{N} \Rightarrow (f(x_{n_k}))$ is unbdd.

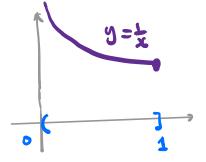
by construction (4)

(1) unbdd interval

f(x) := x

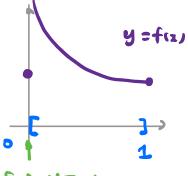
(2) non-closed interval

$$f: (0,1] \rightarrow \mathbb{R}$$



(3) not continuity

$$f(x) := \begin{cases} \sqrt{x}, & \text{if } x \neq 0 \\ 1, & \text{if } x \neq 0. \end{cases}$$



f is Not cts at o

By Boundedness Theorem, 3 exist in IR

$$M := \sup \{f(x) \mid x \in [a,b]\}$$

$$m := \inf \{f(x) \mid x \in [a,b]\}$$

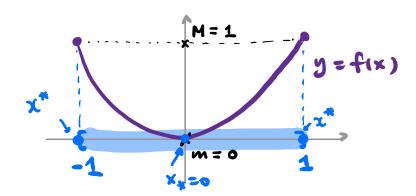
Extreme Value Thm: A cts f: [a.b] - iR always achieve

its maximum and minimum , i.e.

$$\exists x^* \in [a,b] \quad \text{st} \quad f(x^*) = M := \sup \{f(x) \mid x \in [a,b]\}$$

$$\exists x^* \in [a,b] \quad \text{st} \quad f(x^*) = m := \inf \{f(x) \mid x \in [a,b]\}$$

Example: $f(x) = x^2$, $f: [-1,1] \rightarrow \mathbb{R}$



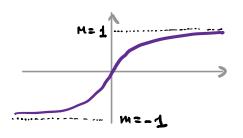
Caution: There can be more than one maxima x* and minima x*.

Remarks: All assumptions are required.

(1) unbdd intenal

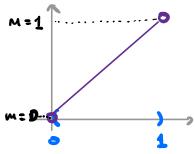
$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \tanh x$$



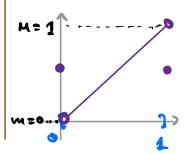
$$f: (0.1) \rightarrow iR$$

$$f(x) = x$$



$$f: [0,1] \rightarrow \mathbb{R}$$

$$f(x) = \begin{cases} x & \text{if } x \in (0,1) \\ \frac{1}{2} & \text{if } x = 0, 1 \end{cases}$$



Proof: We only prove the existence of x..

Since $M := \sup \{f(x) \mid x \in [a,b]\}$, $\forall E > 0$, $\exists X_E \in [a,b] = t$ $M - \xi < f(X_{\xi})$

Take $\mathcal{E} = \frac{1}{n}$, then we obtain a sequence $(x_n) \subseteq [a,b]$ st.

 $M - \frac{1}{N} < f(x_n) \leq M$

By Bolzono-Wererstrass Thm, since (Xn) is a bold seq.

 \Rightarrow \exists Convergent subseq. (X_{n_k}) of (X_n) , say $X^* := \lim_{n \to \infty} (X_{n_k})$

Claim: $f(x^*) = M$

 $\frac{\text{Pf:}}{\text{Since}} \text{ M} - \frac{1}{N_k} < f(x_{N_k}) \leq M$

for all kell.

take k + 00, by continuity of f at 2*

$$M \in f(x^*) = \lim_{k \to \infty} f(x_{n_k}) \in M$$
Limit theorems

